Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 269: 115741, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38029584

RESUMO

BACKGROUND: Experimental studies have shown that disinfection byproducts (DBPs) induce coagulotoxicity, but human evidence is scarce. OBJECTIVE: This study aimed to explore the relationships of DBP exposures with blood coagulation parameters. METHODS: Among 858 women from the Tongji Reproductive and Environmental (TREE) study, urinary dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) were detected as internal biomarkers of DBP exposures. We measured activated partial thromboplastin time (APTT), fibrinogen (Fbg), international normalized ratio (INR), prothrombin time (PT), and thrombin time (TT) as blood coagulation parameters. Multivariable linear regression models were utilized to estimate the relationships between urinary DCAA and TCAA and blood coagulation parameters. The effect modifications by demographic and lifestyle characteristics were further explored. RESULTS: Elevated tertiles of urinary DCAA concentrations were associated with increased PT and INR (11.29%, 95% CI: 1.66%, 20.92% and 0.99%, 95% CI: 0.08%, 1.90% for the third vs. first tertile, respectively; both P for trends < 0.05). Stratification analysis showed that the positive associations were only observed among younger (< 30 years), leaner (body mass index < 24.0 kg/m2), and non-passive smoking women. Moreover, elevated tertiles of urinary TCAA concentrations in positive associations with PT and INR were observed among younger women (17.89%, 95% CI: 2.50%, 33.29% and 1.82%, 95% CI: 0.34%, 3.30% for the third vs. first tertile, respectively; both P for trends < 0.05) but not among older women (both P for interactions < 0.05). CONCLUSION: Higher levels of urinary DCAA and TCAA are associated with prolonged clotting time among women.


Assuntos
Desinfecção , Reprodução , Humanos , Feminino , Idoso , Desinfecção/métodos , Coagulação Sanguínea , Ácido Tricloroacético/urina , Biomarcadores/urina , Ácido Dicloroacético/urina
2.
Environ Res ; 209: 112863, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35123968

RESUMO

BACKGROUND: Disinfection by-products (DBPs) have been shown to impair female reproductive function. However, epidemiological evidence on reproductive hormones is scarce. OBJECTIVE: To investigate the associations between DBP exposures and reproductive hormones among women undergoing assisted reproductive technology. METHODS: We included 725 women from the Tongji Reproductive and Environmental (TREE) Study, an ongoing cohort conducted in Wuhan, China during December 2018 and January 2020. Urine samples collected at recruitment were quantified for dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) as biomarkers of DBP exposures. At day 2-5 of menstruation, serum reproductive hormones including luteinizing hormone (LH), estradiol (E2), total testosterone (T), progesterone (PRGE), and prolactin (PRL) were determined. Multivariate linear regression models were performed to assess the associations of urinary DCAA and TCAA concentrations with reproductive hormone levels. Dose-response relationships were investigated using natural cubic spline (NCS) and restricted cubic spline (RCS) models. RESULTS: After adjusting for relevant confounders, we observed that higher urinary DCAA levels were associated with increased serum PRGE (9.2%; 95% CI: -0.55%, 19.8% for the highest vs. lowest tertile; P for trend = 0.06). Based on NCS models, we observed U-shaped associations of urinary DCAA with serum PRGE and PRL; each ln-unit increment in urinary DCAA concentrations above 3.61 µg/L and 6.30 µg/L was associated with 18.9% (95% CI: 4.8%, 34.7%) and 23.3% (95% CI: -0.92%, 53.5%) increase in serum PRGE and PRL, respectively. The U-shaped associations were further confirmed in RCS models (P for overall association ≤0.01 and P for non-linear associations ≤0.04). We did not observe evidence of associations between urinary TCAA and reproductive hormones. CONCLUSION: Urinary DCAA but not TCAA was associated with altered serum PRGE and PRL levels among women undergoing assisted reproductive technology.


Assuntos
Desinfecção , Ácido Tricloroacético , Biomarcadores/urina , Ácido Dicloroacético/urina , Feminino , Hormônios , Humanos , Ácido Tricloroacético/urina
3.
Toxicol Sci ; 74(1): 192-202, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12730618

RESUMO

Glutathione transferase zeta (GSTZ1-1) catalyzes the isomerization of maleylacetoacetate (MAA) to fumarylacetoacetate, the penultimate step in the tyrosine degradation pathway. GSTZ1-1 is inactivated by dichloroacetic acid (DCA), which is used for the clinical management of congenital lactic acidosis and is a drinking-water contaminant. Metabolic changes associated with chemically induced GSTZ1-1 deficiency are poorly understood. The objective of this study was to investigate the biochemical and toxicological effects of giving 0.3-1.2 mmol DCA/kg/day for 5 days on MAA-metabolism in male Fischer rats. Urine from DCA-treated rats inhibited delta-aminolevulinic acid dehydratase (delta-ALAD) activity, which is used for the diagnosis of hereditary tyrosinemia type I. Mass spectrometric analyses of urine from rats given DCA demonstrated elevated excretion of MAA and its decarboxylation product, maleylacetone (MA); succinylacetone (SA), the reduced analogue of MA, was not detected. DCA-induced changes in MA excretion were dose-dependent and were significantly elevated after day 2 of treatment. MA excretion was reversible after discontinuation of DCA treatment and was enhanced 10-fold by the coadministration of homogentisic acid (HGA). MA was cytotoxic to hepatocytes in vitro (EC50 ~ 350 microM) but morphological changes were not observed in liver, kidney, and brain of rats given both DCA and HGA. These data indicate that DCA-induced inactivation of GSTZ1-1 leads to formation of an MAA-derived intermediate, MA, that may be a mediator and biomarker for DCA-associated toxicities.


Assuntos
Ácido Dicloroacético/farmacologia , Glutationa Transferase/deficiência , Maleatos/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Cromatografia Líquida , Ácido Dicloroacético/urina , Cromatografia Gasosa-Espectrometria de Massas , Cinética , Fígado/patologia , Masculino , Maleatos/urina , Camundongos , Camundongos Transgênicos , Sintase do Porfobilinogênio/metabolismo , Ratos , Ratos Endogâmicos F344 , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética , Tirosina/metabolismo
4.
Toxicol Appl Pharmacol ; 153(1): 20-7, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9875296

RESUMO

Chronic exposure of rodents to perchloroethene (PER) increased the incidence of liver tumors in male mice and resulted in a small but significant increase in the incidence of renal tumors in male rats. The tumorigenicity of PER is mediated by metabolic activation reactions. PER is metabolized by cytochrome P450 and by conjugation with glutathione. Cytochrome P450 oxidation of PER results in trichloroacetyl chloride which reacts with water to trichloroacetic acid (TCA) which is excreted. The formation of S-(trichlorovinyl)glutathione (TCVG) from PER results in nephrotoxic metabolites. TCVG is cleaved to S-(trichlorovinyl)-L-cysteine (TCVC) and acetylated to N-acetyl-S-(trichlorovinyl)-L-cysteine (N-ac-TCVC), which is excreted with urine. TCVC is also cleaved in the kidney by cysteine conjugate beta-lyase to dichlorothioketene which may react with water to dichloroacetic acid (DCA) or with cellular macromolecules. The object of this study was to comparatively quantify the dose-dependent excretion of PER metabolites in urine of humans and rats after inhalation exposure. Three female and three male human volunteers and three female and three male rats were exposed to 10, 20, and 40 ppm PER for 6 h, and three female and three male rats to 400 ppm. A dose-dependent increase in the excretion of TCA and N-ac-TCVC after exposure to PER was found both in humans and in rats. A total of 20.4 +/- 7.77 mumol of TCA and 0.21 +/- 0.05 mumol of N-ac-TCVC were excreted in urine of human over 78 h after the start of exposure to 40 ppm PER; only traces of DCA were present. After identical exposure conditions, rats excreted 1.64 +/- 0.42 mumol of TCA, 0.006 +/- 0.002 mumol of N-ac-TCVC and 0.18 +/- 0.04 mumol of DCA. Excretion of N-ac-TCVC in male rats exposed to 400 ppm PER (103.7 nmol) was significantly higher, compared to female rats (31.5 nmol) exposed under identical conditions. N-ac-TCVC was rapidly eliminated with urine both in humans (t1/2 = 14.1 h) and in rats (t1/2 = 7.5 h). When comparing the urinary excretion of N-ac-TCVC, a potential marker for the formation of reactive intermediates in the kidney, humans received a significantly lower dose (3 nmol/kg at 40 ppm) compared to rats (23.0 nmol/kg) after identical exposure conditions. In addition, rats excreted large amounts of DCA which likely is a product of the beta-lyase-dependent metabolism of TCVC in the kidney. The obtained data suggest that glutathione conjugate formation and beta-lyase-dependent bioactivation of TCVC in PER metabolism is significantly higher in rats than in humans. Thus, using rat tumorigenicity data for human risk assessment of PER exposure may overestimate human tumor risks.


Assuntos
Carcinógenos/farmacocinética , Poluentes Ambientais/farmacocinética , Solventes/farmacocinética , Tetracloroetileno/farmacocinética , Acetilcisteína/análogos & derivados , Acetilcisteína/urina , Adulto , Idoso , Animais , Biotransformação , Ácido Dicloroacético/urina , Feminino , Meia-Vida , Humanos , Exposição por Inalação , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Wistar , Ácido Tricloroacético/urina
5.
Drug Metab Dispos ; 23(12): 1412-6, 1995 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8689953

RESUMO

Trichloroacetate (TCA), dichloroacetate (DCA), and bromodichloroacetate (BDCA) are byproducts of the chlorination of drinking water. TCA acts primarily as a peroxisome proliferator, but DCA produces tumors at doses less than required for peroxisome proliferation. BDCA does not induce peroxisome proliferation even at high doses. This study attempts to determine whether differences in the metabolism of the trihaloacetates (THAs) may contribute to their differing toxicological properties. Studies were performed in male B6C3F1 mice given [14C1,2]TCA, [14C1]BDCA, and [14C1,2]DCA by gavage. The replacement of a Cl by a Br greatly enhances THA metabolism. Much less radiolabel from BDCA is retained in the carcass after 24 hr than from TCA. Radiolabel from BDCA is largely found in the urine, with oxalate being the major metabolite. TCA is largely eliminated unchanged in the urine. There are dose-related changes in the rate of CO2 production from BDCA. The initial rate of CO2 production is reduced from 4.1 +/- 0.3 hr-1 at 5 and 20 mg/kg to 2.7 +/- 0.6 hr-1 at 100 mg/kg, but the net conversion to CO2 in 24 hr is greater at the highest dose. As would be predicted, substitution Br for Cl on TCA greatly increased its metabolism.


Assuntos
Acetatos/metabolismo , Acetatos/farmacocinética , Acetatos/urina , Animais , Biotransformação , Ácido Dicloroacético/farmacocinética , Ácido Dicloroacético/urina , Fezes/química , Masculino , Camundongos , Camundongos Endogâmicos , Distribuição Tecidual , Ácido Tricloroacético/farmacocinética , Ácido Tricloroacético/urina
6.
J Toxicol Environ Health ; 38(1): 19-32, 1993 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-8421320

RESUMO

The disposition of dichloroacetic acid (DCA) was investigated in Fischer 344 rats over the 48 h after oral gavage of 282 mg/kg of 1- or 2-[14C]-DCA (1-DCA or 2-DCA) and 28.2 mg/kg of 2-DCA. DCA was absorbed quickly, and the major route of disposition was through exhalation of carbon dioxide and elimination in the urine. The dispositions of 1- and 2-DCA at 282 mg/kg were similar. With 2-DCA, the disposition differed with dose in that the percentage of the dose expired as carbon dioxide decreased from 34.4% (28.2 mg/kg) to 25.0% (282 mg/kg), while the percentage of the radioactivity excreted in the urine increased from 12.7 to 35.2%. This percentage increase in the urinary excretion was mostly attributable to the presence of unmetabolized DCA, which comprised more than 20% at the higher dose and less than 1% at the lower dose. The major urinary metabolites were glycolic acid, glyoxylic acid, and oxalic acid. DCA and its metabolites accumulated in the tissues and were eliminated slowly. After 48 h, 36.4%, 26.2%, and 20.8% of the dose was retained in the tissues of rats administered 28.2 and 282 mg/kg of 2-DCA and 282 mg/kg of 1-DCA, respectively. Of the organs examined, the liver (4.9-7.9% of dose) and muscle (4.5-9.9%) contained the most radioactivity, followed by skin (3.3-4.5%), blood (1.4-2.6%), and intestines (1.0-1.7%). One metabolite, glyoxylic acid, which is mutagenic, might be responsible for or contribute to the carcinogenicity of DCA.


Assuntos
Ácido Dicloroacético/farmacocinética , Administração Oral , Animais , Dióxido de Carbono/análise , Cromatografia Líquida de Alta Pressão , Ácido Dicloroacético/metabolismo , Ácido Dicloroacético/urina , Glicolatos/urina , Absorção Intestinal , Masculino , Ratos , Ratos Endogâmicos F344 , Distribuição Tecidual
7.
Cancer Lett ; 8(3): 263-9, 1980 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-7226146

RESUMO

Data derived from studies with vinylidene chloride (1,1-dichloroethylene)and 1,1,2-trichloroethylene suggest that similar mutagenic and tumorogenic properties in mice may be attributable to rearrangement of the 2 haloalkene-derived haloepoxides, respectively, into chloroacetyl chloride and dichloroacetyl chloride. On the other hand, the relative harmlessness of 1,1,2-trichloroethylene in rats and man is due to alternative rearrangement of 1,1,2-trichloroethylene oxide into chloral and the further products of its metabolism. The identification in mice of the new 1,1,2-trichloroethylene metabolite, dichloroacetic acid (in addition to trichloroacetic acid) strongly supports this supposition. The small proportion of dichloroacetic acid in relation to the large proportion of trichloroacetic acid in the urine of the treated mice is consistent with a spill-over model that is now tentatively proposed for 1,1,2-trichloroethylene metabolism in these animals.


Assuntos
Acetatos/urina , Ácido Dicloroacético/urina , Ácido Tricloroacético/urina , Tricloroetileno/metabolismo , Animais , Biotransformação , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA